

ScienceDirect

Metabolism
Clinical and Experimental

www.elsevier.com/locate/metabol

Metabolism Clinical and Experimental 56 (2007) 476-483

# Limitation by p70 S6 kinase of platelet-derived growth factor-BB-induced interleukin 6 synthesis in osteoblast-like MC3T3-E1 cells

Shinji Takai<sup>a</sup>, Haruhiko Tokuda<sup>a,b</sup>, Yoshiteru Hanai<sup>a,b</sup>, Osamu Kozawa<sup>a,\*</sup>

<sup>a</sup>Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
<sup>b</sup>Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
Received 17 March 2006; accepted 16 November 2006

### **Abstract**

It has been reported that platelet-derived growth factor—BB (PDGF-BB) stimulates interleukin 6 (IL-6) in osteoblasts. In the present study, we investigated the mechanism of IL-6 synthesis induced by PDGF-BB in osteoblast-like MC3T3-E1 cells. Platelet-derived growth factor—BB time-dependently induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, stress-activated protein kinase/c-*Jun* N-terminal kinase (SAPK/JNK), and p70 S6 kinase. PD98059 (an inhibitor of MAP kinase/extracellular signal-regulated kinase kinase [MEK]), SB203580 (an inhibitor of p38 MAP kinase), or SP600125 (an inhibitor of SAPK/JNK) suppressed the IL-6 synthesis induced by PDGF-BB. Rapamycin, an inhibitor of p70 S6 kinase, significantly enhanced the PDGF-BB—stimulated IL-6 synthesis. The PDGF-BB—induced phosphorylation of p70 S6 kinase was suppressed by rapamycin. Rapamycin failed to affect the PDGF-BB—induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK. These results strongly suggest that PDGF-BB stimulates IL-6 synthesis through activation of 3 MAP kinases in osteoblasts and that p70 S6 kinase negatively regulates the IL-6 synthesis. © 2007 Elsevier Inc. All rights reserved.

### 1. Introduction

Interleukin 6 (IL-6) is a pleiotropic cytokine that has important physiologic effects on a wide range of functions such as promoting B-cell differentiation and T-cell activation and inducing acute-phase proteins [1-3]. It is generally recognized that bone metabolism is regulated mainly by 2 functional cells, osteoblasts and osteoclasts, responsible for bone formation and bone resorption, respectively [4]. As for bone metabolism, IL-6 has been shown to stimulate bone resorption and promote osteoclast formation [2,3,5,6]. It has been reported that potent bone resorptive agents such as tumor necrosis factor  $\alpha$  and IL-1 stimulate IL-6 synthesis in osteoblasts [5,7,8]. Currently, accumulating evidence indicates that IL-6 secreted from osteoblasts plays a pivotal role as a downstream effector of bone-resorptive agents.

It is well known that platelet-derived growth factor (PDGF) is a mitogenic factor, which mainly acts on connective tissue cells [9,10]. Platelet-derived growth factor occurs as 5 different isoforms [10]. Platelet-derived growth

factor isoforms were originally isolated from platelets but have been shown to be produced and released from a variety of cell types including osteosarcoma cells [9,11]. As for stimulation of biologic activities in bone cells, PDGF-BB is a potent stimulator and induces osteoblast proliferation and collagen synthesis [12]. It is recognized that PDGF, released during platelet aggregation, has a pivotal role in fracture healing as a systemic factor and that PDGF also regulates bone remodeling as a local factor [12]. Platelet-derived growth factor receptor has an intrinsic protein tyrosine kinase activity and associates with SH-2 domain-containing substrates such as phospholipase C-γ and phosphatidylinositol 3-kinase [9]. We have previously reported that PDGF-BB activates phosphatidylcholine-hydrolyzing phospholipase D via tyrosine kinase activation, resulting in protein kinase C activation in osteoblast-like MC3T3-E1 cells [13]. It has been shown that PDGF-BB induces the transcription of IL-6 through the activator protein 1 complex and activating transcription factor 2 in primary cultured rat osteoblasts [14]. However, the exact mechanism underlying PDGF-BB-stimulated IL-6 synthesis in osteoblasts is not fully known.

It is generally recognized that p70 S6 kinase is a mitogen-activated serine/threonine kinase required for cell

<sup>\*</sup> Corresponding author. Tel.: +81 58 230 6214; fax: +81 58 230 6215. E-mail address: okozawa@cc.gifu-u.ac.jp (O. Kozawa).

proliferation and G<sub>1</sub> cell-cycle progression [15]. As for osteoblasts, it has been shown that fluoroaluminate induces an increase in p70 S6 kinase phosphorylation [16]. In our previous study [17], we have reported that p70 S6 kinase plays as a positive regulator in bone morphogenetic protein 4–stimulated synthesis of vascular endothelial growth factor in osteoblast-like MC3T3-E1 cells. In addition, we recently demonstrated that p38 mitogen-activated protein (MAP) kinase, a member of the MAP kinase superfamily, functions at a point upstream from p70 S6 kinase in the synthesis of vascular endothelial growth factor in these cells [18]. However, the exact role of p70 S6 kinase in osteoblasts has not yet been fully clarified.

In the present study, we investigated the mechanism behind PDGF-BB-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. We here show that PDGF-BB stimulates IL-6 synthesis through activation of 3 MAP kinases, p44/p42 MAP kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), in these cells, and that p70 S6 kinase concomitantly activated by PDGF-BB has an inhibitory role in the IL-6 synthesis.

### 2. Materials and methods

### 2.1. Materials

Platelet-derived growth factor-BB and mouse IL-6 and osteocalcin enzyme-linked immunosorbent assay (ELISA) kit were purchased from R&D Systems (Minneapolis, MN). Indomethacin was purchased from Sigma Chemical (St Louis, MO). PD98059, SB203580, SP600125, and rapamycin were obtained from Calbiochem-Novabiochem (La Jolla, CA). Phospho-specific p44/p42 MAP kinase antibodies, p44/p42 MAP kinase antibodies, phospho-specific p38 MAP kinase antibodies, p38 MAP kinase antibodies, phospho-specific SAPK/JNK antibodies, SAPK/JNK antibodies, phospho-specific p70 S6 kinase antibodies (Thr389), and p70 S6 kinase antibodies were purchased from Cell Signaling (Beverly, MA). ECL Western blotting detection system was purchased from Amersham Biosciences (Piscataway, NJ). Other materials and chemicals were obtained from commercial sources. PD98059, SB203580, SP600125, or rapamycin were dissolved in dimethyl sulfoxide. The maximum concentration of dimethyl sulfoxide was 0.1%, which did not affect the assay for IL-6 or Western blot analysis.

### 2.2. Cell culture

Cloned osteoblast-like MC3T3-E1 cells derived from newborn mouse calvaria [19] were maintained as previously described [20]. Briefly, the cells were cultured in  $\alpha$ -minimum essential medium ( $\alpha$ -MEM) containing 10% fetal calf serum (FCS) at 37°C in a humidified atmosphere of 5% CO<sub>2</sub>/95% air. The cells were seeded into 35- or 90-mm diameter dishes in  $\alpha$ -MEM containing 10% FCS.

After 5 days, the medium was exchanged for  $\alpha$ -MEM containing 0.3% FCS. The cells were used for experiments after 48 hours.

### 2.3. Interleukin 6 ELISA

The cultured cells were stimulated by various doses of PDGF-BB in 1 mL of  $\alpha$ -MEM containing 0.3% FCS for the indicated periods. When indicated, the cells were pretreated

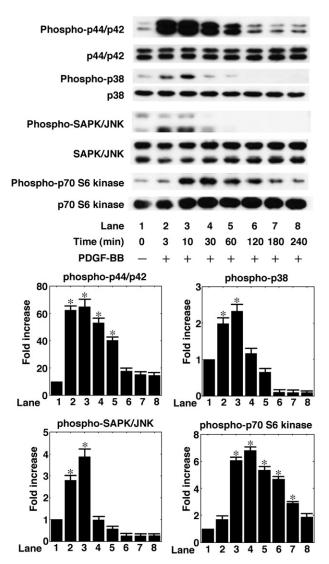
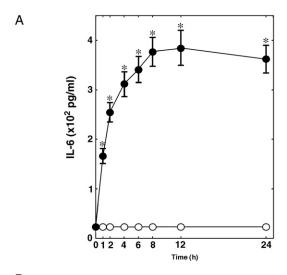




Fig. 1. Effects of PDGF-BB on the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, SAPK/JNK, or p70 S6 kinase in MC3T3-E1 cells. The cultured cells were stimulated by 50 ng/mL PDGF-BB for the indicated periods. The extracts of cells were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis with subsequent Western blotting analysis with antibodies against phospho-specific p44/p42 MAP kinase, p44/p42 MAP kinase, phospho-specific p38 MAP kinase, p38 MAP kinase, pnospho-specific SAPK/JNK, SAPK/JNK, phospho-specific p70 S6 kinase, or p70 S6 kinase. Similar results were obtained with 2 additional and different cell preparations. The histogram shows quantitative representations of the levels of PDGF-BB—induced phosphorylation obtained from laser densitometric analysis of 3 independent experiments. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations. \*P<0.05 compared with the value of control.



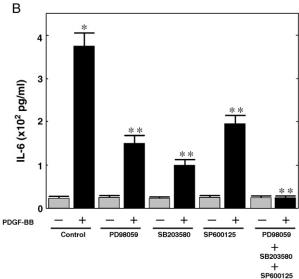



Fig. 2. Time course of PDGF-BB—induced IL-6 synthesis from MC3T3-E1 cells and effects of PD98059, SB203580, or SP600125 on the IL-6 synthesis by PDGF-BB in MC3T3-E1 cells. A, The cultured cells were stimulated by 50 ng/mL PDGF-BB ( $\bullet$ ) or vehicle (O) for the indicated periods. B, The cultured cells were pretreated with 3  $\mu$ mol/L PD98059, 3  $\mu$ mol/L SB203580, 3  $\mu$ mol/L SP600125, or vehicle for 60 minutes and then stimulated by vehicle (gray bar) or 50 ng/mL PDGF-BB (black bar) for 24 hours. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations. \* $^*P$  < .05 compared with the value of control. \*\* $^*P$  < .05 compared with the value of PDGF-BB alone.

with PD98059, SB203580, SP600125, indomathacin, or rapamycin for 60 minutes. The conditioned medium was collected at the end of the incubation, and the IL-6 concentration was measured by ELISA kit.

### 2.4. Osteocalcin ELISA

The cultured cells were pretreated with various doses of rapamycin for 60 minutes and then stimulated by 50 ng/mL PDGF-BB or vehicle for 24 hours. The conditioned medium was collected at the end of the incubation, and the osteocalcin concentration was measured by ELISA kit.

### 2.5. Western blot analysis

The cultured cells were stimulated by PDGF-BB in α-MEM containing 0.3% FCS for the indicated periods. The cells were washed twice with phosphate-buffered saline and then lysed, homogenized, and sonicated in a lysis buffer (pH 6.8) containing 62.5 mmol/L Tris/HCl, 2% sodium dodecyl sulfate, 50 mmol/L dithiothreitol, and 10% glycerol. The cytosolic fraction was collected as a supernatant after centrifugation at 125000g for 10 minutes at 4°C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed by Laemmli [21] in 10% polyacrylamide gel. Western blotting analysis was performed as described previously [22] by using phospho-specific p44/p42 MAP kinase antibodies, p44/p42 MAP kinase antibodies, phospho-specific p38 MAP kinase antibodies, p38 MAP kinase antibodies, phospho-specific SAPK/JNK antibodies, SAPK/ JNK antibodies, phospho-specific p70 S6 kinase antibodies, or p70 S6 kinase antibodies, with peroxidase-labeled antibodies raised in goat-against-rabbit immunoglobulin G being used as second antibodies. Peroxidase activity on the polyvinylidene difluoride (PVDF) sheet was visualized on x-ray film by means of the ECL Western blotting detection system.

### 2.6. Determination

The absorbance of ELISA samples was measured at 450 nm with EL 340 Bio Kinetic Reader (Bio-Tek Instruments, Winooski, VT). The densitometric analysis was performed using Molecular Analyst/Macintosh (Bio-Rad Laboratories, Hercules, CA).

### 2.7. Statistical analysis

The data were analyzed by analysis of variance followed by the Bonferroni method for multiple comparisons between pairs, and P < .05 was considered significant. All data are presented as the mean  $\pm$  SEM of triplicate determinations. Each experiment was repeated 3 times, with similar results.

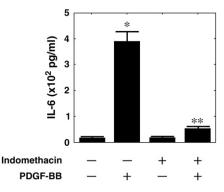



Fig. 3. Effect of indomethacin on the PDGF-BB–stimulated IL-6 synthesis in MC3T3-E1 cells. The cultured cells were pretreated with 10  $\mu$ mol/L indomethacin or vehicle for 60 minutes and then stimulated by 50 ng/mL PDGF-BB or vehicle for 24 hours. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations. \* $^*P$  < .05 compared with the control. \* $^*P$  < .05 compared with the value of PDGF-BB alone.

#### 3. Results

## 3.1. Effects of PDGF-BB on the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK in MC3T3-E1 cells

It is well recognized that 3 MAP kinases, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK, are known as central elements used by mammalian cells to transduce the various messages of a variety of agonists [23]. To investigate whether PDGF-BB activates MAP kinases in osteoblast-like MC3T3-E1 cells, we examined the effect of PDGF-BB on the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK. Platelet-derived growth factor-BB timedependently induced the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK. The effect of PDGF-BB on the p44/p42 MAP kinase phosphorylation reached its peak at 10 minutes and continued to 60 minutes after the stimulation of PDGF-BB (Fig. 1). On the other hand, the effect on the phosphorylation of p38 MAP kinase reached its peak at 10 minutes and diminished within 30 minutes after the stimulation of PDGF-BB (Fig. 1). In addition, the maximum effect on the SAPK/JNK phosphorylation was observed at 10 minutes and diminished within 30 minutes after the stimulation of PDGF-BB (Fig. 1).

## 3.2. Effects of PD98059, SB203580, or SP600125 on the PDGF-BB-stimulated IL-6 synthesis in MC3T3-E1 cells

It has been reported that PDGF-BB induces IL-6 transcription in osteoblasts from fetal rat calvariae [14]. We found that PDGF-BB time-dependently stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells (Fig. 2A). To

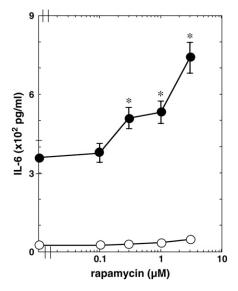



Fig. 4. Effect of rapamycin on the PDGF-BB–stimulated IL-6 synthesis in MC3T3-E1 cells. The cultured cells were pretreated with various doses of rapamycin for 60 minutes and then stimulated by 50 ng/mL PDGF-BB ( o) or vehicle (O) for 24 hours. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations. \*P < .05 compared with the value of PDGF-BB alone.

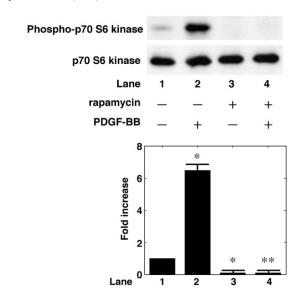



Fig. 5. Effect of rapamycin on the PDGF-BB–induced phosphorylation of p70 S6 kinase in MC3T3-E1 cells. The cultured cells were pretreated with 30  $\mu mol/L$  rapamycin for 60 minutes and then stimulated by 50 ng/mL PDGF-BB or vehicle for 30 minutes. The extracts of cells were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis with subsequent Western blotting analysis with antibodies against phospho-specific p70 S6 kinase or p70 S6 kinase. The histogram shows quantitative representations of the levels of PDGF-BB–induced phosphorylation obtained from laser densitometric analysis of 3 independent experiments. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations. \*P<.05 compared with the value of PDGF-BB alone.

clarify the involvement of the MAP kinase pathway in the PDGF-BB-stimulated IL-6 synthesis in these cells, we first examined the effect of PD98059, a specific inhibitor of MAP kinase/extracellular signal-regulated kinase kinase (MEK, an upstream kinase that activates p44/p42 MAP kinase) [24], on the IL-6 synthesis. PD98059, which by itself had little effect on the IL-6 levels, significantly suppressed the PDGF-BB-stimulated synthesis of IL-6 (Fig. 2B). Similarly, the IL-6 synthesis stimulated by PDGF-BB was markedly reduced by SB203580, a specific inhibitor of p38 MAP kinase [25], or SP600125, a specific SAPK/JNK inhibitor [26] (Fig. 2B). In addition, a combination of PD98059, SB203580, and SP600125 completely suppressed the PDGF-BB-stimulated synthesis of IL-6 (Fig. 2B). To determine whether these inhibitors themselves could affect cell survival, or cell number, the cell viability had been assessed by trypan blue dye exclusion test. We confirmed that the viability of the cells incubated at 37°C for 24 hours in the presence of 3  $\mu$ mol/L PD980590, 3  $\mu$ mol/L SB203580, or 3  $\mu$ mol/L SP600125 was more than 90% compared with that of the control cells.

### 3.3. Effect of indomethacin on the PDGF-BB-stimulated IL-6 synthesis in MC3T3-E1 cells

Because we have previously reported that prostaglandins (PGs) increase IL-6 synthesis in MC3T3-E1 cells [27-30], to address whether endogenous PGs are involved in the

PDGF-BB-induced IL-6 synthesis in MC3T3-E1 cells, we examined the effect of indomethacin, an inhibitor of cyclooxygenase [31], on the IL-6 synthesis. Indomethacin, which by itself had no effect on the IL-6 levels, significantly reduced the PDGF-BB-induced synthesis of IL-6 (Fig. 3). These findings suggest that PGs mediate the stimulatory effect of PDGF-BB on IL-6 synthesis in these cells.

## 3.4. Effect of PDGF-BB on the phosphorylation of p70 S6 kinase in MC3T3-E1 cells

To clarify whether PDGF-BB activates p70 S6 kinase in MC3T3-E1 cells, we next examined the effect of PDGF-BB on the phosphorylation of p70 S6 kinase. p70 S6 kinase was time-dependently phosphorylated by PDGF-BB (Fig. 1). The maximum effect on the p70 S6 kinase phosphorylation was observed at 30 minutes after the stimulation of PDGF-BB, and the PDGF-BB effect continued 180 minutes after the stimulation.

## 3.5. Effect of rapamycin on the PDGF-BB-stimulated IL-6 synthesis in MC3T3-E1 cells

To investigate whether p70 S6 kinase is involved in the PDGF-BB-induced synthesis of IL-6 in MC3T3-E1 cells,

we examined the effect of rapamycin, a specific inhibitor of p70 S6 kinase [32,33], on the synthesis of IL-6 induced by PDGF-BB. Rapamycin, which alone failed to affect the IL-6 levels, significantly enhanced the PDGF-BB-induced synthesis of IL-6 (Fig. 4). The amplifying effect of rapamycin was dose-dependent in the range between 0.1 and 3  $\mu$ mol/L. Rapamycin at 3  $\mu$ mol/L caused approximately 110% enhancement in the PDGF-BB effect.

## 3.6. Effect of rapamycin on the PDGF-BB-induced phosphorylation of p70 S6 kinase in MC3T3-E1 cells

We examined the effect of rapamycin on the PDGF-BB—induced phosphorylation of p70 S6 kinase. Rapamycin, which itself significantly suppressed the phosphorylation of p70 S6 kinase in itself, truly suppressed the PDGF-BB—induced phosphorylation of p70 S6 kinase (Fig. 5).

## 3.7. Effect of rapamycin on the proliferation or the differentiation of MC3T3-E1 cells

To determine whether rapamycin could affect cell survival, or cell number, the cell viability had been assessed by trypan blue dye exclusion test. We confirmed that the viability of the cells incubated at 37°C for 24 hours in the

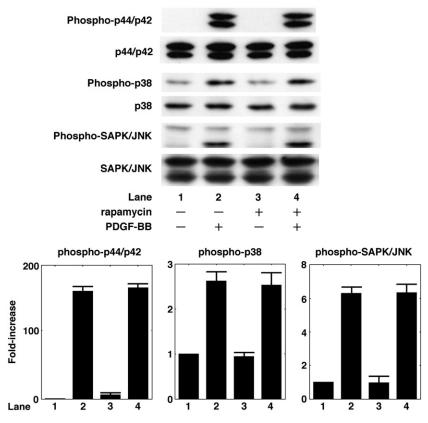



Fig. 6. Effects of rapamycin on the PDGF-BB-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK in MC3T3-E1 cells. The cultured cells were pretreated with 30  $\mu$ mol/L rapamycin or vehicle for 60 minutes and then stimulated by 50 ng/mL PDGF-BB or vehicle for 10 minutes. The extracts of cells were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis with subsequent Western blotting analysis with antibodies against phospho-specific p44/p42 MAP kinase, p44/p42 MAP kinase, phospho-specific p38 MAP kinase, phospho-specific SAPK/JNK, or SAPK/JNK. The histogram shows quantitative representations of the levels of PDGF-BB-induced phosphorylation obtained from laser densitometric analysis of 3 independent experiments. Each value represents the mean  $\pm$  SEM of triplicate determinations. Similar results were obtained with 2 additional and different cell preparations.

presence of 3  $\mu$ mol/L rapamycin was more than 90% compared with that of the control cells. To determine whether rapamycin could affect the cell proliferation, we counted the cell number before and after the 24-hour incubation with rapamycin. We confirmed that rapamycin did not affect the cell number at a dose of 3  $\mu$ mol/L (9.7  $\pm$  1.1  $\times$  10<sup>5</sup> cells/mL for control; 15.6  $\pm$  1.6  $\times$  10<sup>5</sup> cells/mL for 50 ng/mL PDGF-BB alone; 10.1  $\pm$  1.4  $\times$  10<sup>5</sup> cells/mL for 3  $\mu$ mol/L rapamycin alone; and 14.7  $\pm$  1.6  $\times$  10<sup>5</sup> cells/mL for 50 ng/mL PDGF-BB with 3  $\mu$ mol/L rapamycin, as measured during the stimulation for 24 hours).

Next, to determine whether rapamycin affects the differentiation of these cells, we examined the effect of rapamycin on the production of osteocalcin, a mature osteoblast phenotype [34], in MC3T3-E1 cells. Platelet-derived growth factor–BB or rapamycin did not induce osteocalcin production in MC3T3-E1 cells (2.7  $\pm$  0.3 ng/mL for control; 2.6  $\pm$  0.3 ng/mL for 50 ng/mL PDGF-BB alone; 2.5  $\pm$  0.4 ng/mL for 3  $\mu$ mol/L rapamycin alone; and 2.5  $\pm$  0.3 ng/mL for 50 ng/mL PDGF-BB with 3  $\mu$ mol/L rapamycin, as measured during the stimulation for 24 hours). These findings as a whole suggest that rapamycin hardly affects the proliferation and the differentiation of osteoblast-like MC3T3-E1 cells within 24 hours.

3.8. Effects of rapamycin on the PDGF-BB-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK in MC3T3-E1 cells

To investigate whether rapamycin's effect on the PDGF-BB-stimulated IL-6 synthesis is dependent on the activation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK, we next examined the effect of rapamycin on the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK induced by PDGF-BB in these cells. However, rapamycin failed to affect the PDGF-BB-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or SAPK/JNK (Fig. 6).

### 4. Discussion

In the present study, we found that PDGF-BB time-dependently induced the phosphorylation of p70 S6 kinase in osteoblast-like MC3T3-E1 cells, using phospho-specific p70 S6 kinase (Thr389) antibodies. It is generally recognized that the activity of p70 S6 kinase is regulated by multiple phosphorylation events [15]. It has been shown that phosphorylation at Thr389 most strongly correlates with p70 S6 kinase activity [15]. Taking these results into account, it is most likely that PDGF-BB activates p70 S6 kinase in osteoblast-like MC3T3-E1 cells. To the best of our knowledge, this is probably the first report showing the PDGF-BB-induced p70 S6 kinase activation in osteoblasts.

We next demonstrated that PDGF-BB induces the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK in these cells. It is well recognized that the MAP kinase superfamily mediates intracellular signaling of

extracellular agonists and plays an important role in cellular functions including proliferation, differentiation, and apoptosis in a variety of cells [23]. Three major MAP kinases, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK, are known as central elements used by mammalian cells to transduce diverse messages [23]. It has been shown that MAP kinases are activated by phosphorylation of threonine and tyrosine residues by dual-specificity MAP kinases [23]. Therefore, our findings strongly suggest that PDGF-BB activates 3 MAP kinases, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK, in osteoblast-like MC3T3-E1 cells. In addition, we showed that the PDGF-BB-stimulated IL-6 synthesis was suppressed by a MEK inhibitor, PD98059 [24]; a specific p38 MAP kinase inhibitor, SB203580 [25]; or a specific SAPK/JNK inhibitor, SP600125 [26], in these cells. Thus, it is probable that PDGF-BB stimulates the synthesis of IL-6 via the 3 MAP kinases in osteoblast-like MC3T3-E1 cells. We have previously reported that PGs increase IL-6 synthesis in MC3T3-E1 cells [27-30]. In the present study, we found that indomethacin significantly reduced the PDGF-BB-induced synthesis of IL-6. These results suggest that PDGF-BB-induced IL-6 production is mediated, at least in part, by PDGF-BB-stimulated PG production in osteoblast-like MC3T3-E1 cells. In addition, we have previously shown that PGE<sub>2</sub>, a major product of eicosanoids in osteoblasts, significantly stimulates IL-6 synthesis after 3 hours in MC3T3-E1 cells [30]. On the contrary, PDGF-BB significantly stimulated the IL-6 production within 3 hours. Taking our findings into account, it is quite likely that there will be PG-dependent and PGindependent effects of PDGF-BB-stimulated IL-6 synthesis, as has been demonstrated for so many growth factors and cytokines in bone cells, and it would be important to be define these. Therefore, experiments using PGE2 itself instead of PDGF-BB are required.

We investigated whether p70 S6 kinase functions in the PDGF-BB-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. The PDGF-BB-stimulated synthesis of IL-6 was significantly amplified by rapamycin, a specific inhibitor of p70 S6 kinase [31,32]. We confirmed that rapamycin truly suppressed the PDGF-BB-induced phosphorylation of p70 S6 kinase. It seems that the activated p70 S6 kinase plays an inhibitory role in the IL-6 synthesis by PDGF-BB in osteoblast-like MC3T3-E1 cells. Therefore, taking our results into account, it is most likely that PDGF-BB activates p70 S6 kinase, resulting in down-regulation of IL-6 synthesis. It is probable that the p70 S6 kinase signaling pathway activated by PDGF-BB limits the PDGF-BB-stimulated IL-6 synthesis. As far as we know, our present finding is probably the first report to show that the activation of p70 S6 kinase leads to the negativefeedback regulation of IL-6 synthesis in osteoblasts.

We investigated the relationship between p70 S6 kinase and 3 MAP kinases in the PDGF-BB-stimulated IL-6 synthesis in MC3T3-E1 cells. However, rapamycin failed to enhance the PDGF-BB-induced phosphorylation levels of

p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK. Therefore, it seems unlikely that p70 S6 kinase signaling pathway affects the PDGF-BB-stimulated synthesis of IL-6 through the amplification of activities of 3 MAP kinases, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK, in osteoblast-like MC3T3-E1 cells.

The p70 S6 kinase pathway is recognized to play a crucial role in various cellular functions, especially cell-cycle progression [15]. Our present results indicate that the p70 S6 kinase pathway in osteoblasts has an important role in the control of the production of IL-6, one of the key regulators of bone metabolism. It is well known that IL-6 produced by osteoblasts is a potent bone resorptive agent and induces osteoclast formation [3,4]. The mitogenic activities of PDGF-BB and its release by platelets suggest an important role in wound healing and fracture repair [35]. It is also possible that PDGF-BB plays a role in acute bone repair after inflammation because the mitogenic actions of PDGF-BB are enhanced in the presence of cytokines [35]. Therefore, our present findings lead us to speculate that PDGF-BBactivated p70 S6 kinase acts as a negative regulator of bone resorption through the fine tuning of the local cytokine network. Thus, the p70 S6 kinase pathway in osteoblasts might be considered to be a new candidate as a molecular target of bone resorption concurrent with various bone diseases. On the contrary, we have previously shown that p70 S6 kinase acts as a positive regulator in bone morphogenetic protein-4-stimulated synthesis of vascular endothelial growth factor in MC3T3-E1 cells [17]. The physiologic significance of regulatory mechanism by p70 S6 kinase in osteoblasts still remains unclear. Further investigation is required to clarify the exact role of p70 S6 kinase in osteoblasts.

In conclusion, our results strongly suggest that p70 S6 kinase plays an important role in the regulation of PDGF-BB-stimulated, MAP kinase-mediated IL-6 synthesis in osteoblasts and may serve as a negative feedback mechanism to prevent from oversynthesizing IL-6 in these cells.

### Acknowledgments

This investigation was supported in part by Grant-in-Aid for Scientific Research (16590873 and 16591482) from the Ministry of Education, Science, Sports and Culture of Japan, Research Grants for Longevity Sciences (15A-1 and 15C-2), and by the Research on Proteomics and the Research on Fracture and Dementia from the Ministry of Health, Labour and Welfare of Japan.

We are very grateful to Yoko Kawamura and Seiko Sakakibara for their skillful technical assistance.

### References

- Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol 1993;54:1-78.
- [2] Heymann D, Rousselle AV. gp130 Cytokine family and bone cells. Cytokine 2000;12:1455-68.

- [3] Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6 is produced by osteoblasts and induces bone resorption. Cytokine Growth Factor Rev 2004;15:49-60.
- [4] Nijweide PJ, Burger EH, Feyen JHM. Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev 1986; 86:855-86.
- [5] Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J mmunol 1990;145:3297-303.
- [6] Roodman GD. Interleukin-6: an osteotropic factor? J Bone Miner Res 1992;7:475-8.
- [7] Helle M, Brakenhoff JPJ, DeGroot ER, Aarden LA. Interleukin 6 is involved in interleukin 1-induced activities. Eur J Immunol 1998; 18:957-9.
- [8] Littlewood AJ, Russil J, Harvey GR, Hughes DE, Russel RGG, Gowen M. The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology 1991;129:1513-20.
- [9] Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79:1283-316.
- [10] Heldin CH, Eriksson U, Ostman A. New members of the plateletderived growth factor family of mitogens. Arch Biochem Biophys 2002;398:284-90.
- [11] Heldin CH, Johnsson A, Wennergren S, Wernstedt C, Betsholtz C, Westermark B. A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 1986;319:511-4.
- [12] Canalis E, Varghese S, McCarthy TL, Centrella M. Role of platelet derived growth factor in bone cell function. Growth Regul 1992;2:151-5.
- [13] Kozawa O, Suzuki A, Watanabe Y, Shinoda J, Oiso Y. Effect of platelet-derived growth factor on phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like cells. Endocrinology 1995; 136:4473-8.
- [14] Franchimont N, Durant D, Rydziel S, Canalis E. Platelet-derived growth factor induces interleukin-6 transcription in osteoblasts through the activator protein–1 complex and activating transcription factor–2. J Biol Chem 1999;274:6783-9.
- [15] Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett 1997;410:78-82.
- [16] Susa M, Standke GJ, Jeschke M, Rohner D. Fluoroaluminate induces pertussis toxin-sensitive protein phosphorylation: differences in MC3T3-E1 osteoblastic and NIH3T3 fibroblastic cells. Biochem Biophys Res Commun 1997;235:680-4.
- [17] Kozawa O, Matsuno H, Uematsu T. Involvement of p70 S6 kinase in bone morphogenetic protein signaling: vascular endothelial growth factor synthesis by bone morphogenetic protein-4 in osteoblasts. J Cell Biochem 2001;81:430-6.
- [18] Tokuda H, Hatakeyama D, Shibata T, Akamatsu S, Oiso Y, Kozawa O. p38 MAP kinase regulates BMP-4–stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am J Physiol Endocrinol Metab 2003; 284:E1202-9.
- [19] Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8.
- [20] Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells. Exp Cell Res 1992;198:130-4.
- [21] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
- [22] Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T. Modulation of the stress-induced synthesis of hsp27 and alpha B-crystallin by cyclic AMP in C6 rat glioma cells. J Neurochem 1996;66:946-50.
- [23] Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999;79:143-80.

- [24] Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo. J Biol Chem 1995;270:27489-94.
- [25] Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995;364:229-33.
- [26] Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 2001;98:13681-6.
- [27] Watanabe-Tomita Y, Suzuki A, Oiso Y, Kozawa O. Prostaglandin E1 stimulates interleukin-6 secretion via protein kinase A in osteoblastlike cells. Cell Signal 1997;9:105-8.
- [28] Kozawa O, Suzuki A, Tokuda H, Uematsu T. Prostaglandin F2alpha stimulates interleukin-6 synthesis via activation of PKC in osteoblastlike cells. Am J Physiol 1997;272:E208-11.
- [29] Tokuda H, Kozawa O, Harada A, Uematsu T. Prostaglandin D2 induces interleukin-6 synthesis via Ca2+ mobilization in osteoblasts:

- regulation by protein kinase C. Prostaglandins Leukot Essent Fatty Acids 1999;61:189-94.
- [30] Kozawa O, Suzuki A, Tokuda H, Kaida T, Uematsu T. Interleukin-6 induced by prostaglandin E2: cross-talk regulation by protein kinase C. Bone 1998;22:355-60.
- [31] Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989;259:315-24.
- [32] Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. Rapamycininduced inhibition of the 70-kilodalton S6 protein kinase. Science 1992;257:973-7.
- [33] Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992;358:70-3.
- [34] Ducy P, Desbois C, Boyce C, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448-52.
- [35] Canalis E, Rydziel S. Platelet-derived growth factor and the skeleton. In: Belizikian J, Raisz LJ, Rodan G, editors. Principles of Bone Biology. 2nd ed. San Diego: Academic Press; 2002. p. 817-24.